

First Semester M.C.A Degree Examination, July/August 2004

Master of Computer Applications

Digital Electronics

- [Max.Marks: 100 Time: 3 hrs.] Note: Answer any FIVE full questions. 1. (a) Convert the Hexa decimal number COCA to binary, octal and decimal number (6 Marks) (b) Subtract $(010111)_2$ from $(010011)_2$ using 2's complement method. (4 Marks) (c) If a memory location starts from 000 and ends with FFF in a memory segment. How many memory locations are there in the memory. (3 Marks) (7 Marks) (c) Write a note on ASCI and EBCDIC codes. (6 Marks) 2. (a) State and prove Demorgan's law. (b) Simplify the following expression (6 Marks) $xy + yz + x\overline{z} + xy\overline{z}$ algebraically. (8 Marks) (c) Compare the performance of different logic families. 3. (a) Simplify the following expression using k-map $F(A,B,C,D) = \sum m(0,4,5,6,7,12,13,15) + \sum d(1,11,14)$ (5 Marks) (b) Design even parity generator (for three inputs A, B and C) (5 Marks) (c) Using tabulation method, obtain the simplified expression (10 Marks) $f(w, x, y, z) = \sum m(0, 3, 5, 6, 7, 8, 12, 15)$ 4. (a) What is full adder? Implement the same using only NAND gates. (10 Marks) (b) Design a circuit which converts BCD digits to EXCESS-3 code. (10 Marks) 5. (a) Explain the working of multiplexer. Design a full adder using multiplexer. (4+6 Marks) (5+5 Marks) (b) Write notes on (i) ROM (ii) RAM 6. (a) What is race around condition in J-K flip-flop and explain how it can be eliminated.
 - (b) Design mod-6 synchronous counter using J-K flip flops. (10 Marks)
 - 7. (a) Explain the need for conversion of analog to digital and digital to analog. (5 Marks)
 - (b) With a neat sketch explain the working of weighted resistor DAC. (7 Marks)
 - (8 Marks) (c) With a neat sketch, explain R/2R conversion process.
 - Write short notes on: 8.

 $(5 \times 4 = 20 \text{ Marks})$

- (a) Universal gates
- (b) PLA
- (c) Parallel adder
- (d) Johnson counter

First Semester M.C.A Degree Examination, January /February 2003 Master of Computer Applications(New Scheme)

Master of Computer Applications (New Scheme)	
Digital Electronics	
Time: 3 hrs.] [Max.Mar	ks: 100
1. (a) Convert $(84672.125)_{10}$ to binary and hexadecimal. (b) Subtract	(5 Marks)
i) 11010.01 from 11100.10 using 2's complement, and ii) 100 from 218 using 9's complement method	(5 Marks)
(c) Explain the three basic logic functions with truth tables and logic d	iagram. (5 Marks)
(d) Write notes on 1) ASCII code and ii) Gray code.	(5 Marks)
2. (a) Define canonical and standard forms of boolean expressions with ex	xamples (6 Marks)
(b) Obtain the canonical form of : $f = ab'c' + a'cd + bd' + bc'd'$	(4 Marks)
(c) With a neat circuit diagram, explain a TTL NAND gate.	(10 Marks)
3. (a) Given $f_1 = \sum_{i=0}^{\infty} (0,3,4,8,10,11,12,13,15)$, $f_2 = \sum_{i=0}^{\infty} (0,4,7,8,9,12,13,15)$, K-map find $f_3 = f_1 \cdot f_2$.	(6 Marks)
(b) Find essential prime implicants and hence the simplified expression u lation method for $f(a,b,c,d,e) = \sum (3,4,7,9,12,14,15,18,19,23,25,d(0,1,8,31))$ in SOP.	sing tabu- 5, 26, 27) + (14 Marks)
4. (a) What is a full subtractor? Write the truth table and logic circuit for and borrow using only NAND gates.	difference (10 Marks)
(b) Design a circuit to generate the 2's complement of 4 bit binary nur	mbers. (10 Marks)
5. (a) Design a BCD adder that has 2 digits BCD as its inputs and prosum of these.	oduces the (10 Marks)
(b) Explain the working of a multiplexer. Realise $\sum (0,3,5,9,11,12,13)$ multiplexer after simplification.	3,14) using (10 Marks)
6. (a) What is a flipflop? with relevant logic diagrams, tables, explain the of SR flipflop. What are its limitations.	he working (10 Marks)
(b) What is a ring counter? How is it useful? How is it converted to counter? explain.	to Johnson (10 Marks)
7. (a) Explain the need for ADC & DAC and basic concepts of the conve	rsions. (5 Marks)
(b) Define accuracy and resolution of DAC.	(5 Marks
(c) With a neat sketch, explain R/2R convertor.	(10 Marks
8. Write short notes on: i) Master slave flipflop ii) Universal gates iii) Parity generators iv) ROM.	

** * **

 $(4 \times 5 = 20 \text{ Marks})$

First Semester M.C.A Degree Examination, January/February 2004

Master of Computer Applications

Digital Electronics

Time: 3 hrs.]

[Max.Marks: 100

Note: 1. Answer any FIVE full questions.

- 2. Write figures and truth table wherever necessary.
- 1. (a) Perform the following operations.

i)
$$\frac{(37)_{16}}{(67)_8} - \frac{(66)_8}{(312)_4} - (?)_{10}$$

ii)
$$(?)_8 + (B2)_{16} = (3100)_4$$

iii)
$$(455)_8 = (?)_{16}$$

iv)
$$(1000)_x = (64)_{10}$$
 find x.

(8 Marks)

- (b) Subtract 11010.010011 from 101.1001 using 2' and 1's complement. (4 Marks)
- (c) Explain in detail
 - i) Error detection code
 - ii) Gray code.

(8 Marks)

2. (a) Prove that

i)
$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC = AB + BC + CA$$

ii)
$$(A+C+D).(A+C+\overline{D}).(A+\overline{C}+D)(A+\overline{B}) = (A+\overline{B}.C.D)$$
 (6 Marks)

(b) Complement the following and reduce them to minimum

i)
$$\overline{A.B} + \overline{A.C}$$

ii)
$$(\overline{x.\overline{y} + x.y.z}) + x.(y + x.\overline{y})$$

(4 Marks)

- (c) Express the following Boolean function in canonical form
 - i) $F(x,y,z) = z + (\overline{x} + y).(x + \overline{y})$

ii)
$$F(x,y,z) = z + (\overline{B} + g) \cdot (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{B} + C + \overline{D}) \cdot (\overline{A} + B + C + \overline{D}) \cdot (\overline{B} + \overline{C} + \overline{D})$$
(10 Marks)

3. (a) Minimize the following using K-map

i)
$$F(A,B,C,D) = \Sigma(0,3,4,5,7) + d(8,9,10,11,12,13,14,15)$$

ii)
$$F(A,B,\mathcal{C},D,E) = \Sigma(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$$
 (8 Marks)

(b) Simplify the given function using Quine Mclusky method.

$$F(A,B,C,D,E) = \Sigma m(0,1,2,8,9,15,17,21,24,25,27,31)$$
 (12 Marks)

Contd.... 2

Page No... 2

MCA13

- 4. (a) Explain the full subtracter, with truth table, logic circuit for difference and borrow using only NAND gates. (10 Marks)
 - (b) Design a combinational circuit that converts a decimal digit from 8, 4, -2, -1 code to BCD. (10 Marks)
- 5. (a) Explain multiplexer and implement the Boolean function

 $F(A, B, C) = \Sigma(1, 3, 5, 6)$ using MUX.

(10 Marks)

(b) Design BCD to decimal Decoder.

(10 Marks)

- **6.** (a) Explain the following with neat diagram,
 - i) Shift register
 - ii) Ring counter

(6 Marks)

(b) Explain master slave J-K flip flop, with neat diagram.

(8 Marks)

(c) Explain Binary up-down counter with neat diagram and necessary table.

(6 Marks)

7. (a) Explain the digital to analog converter with a neat diagram.

(8 Marks)

(b) Explain the programmable logic array.

(6 Marks)

(c) What is SRAM and DRAM? Explain their advantages and disadvantages.

(6 Marks)

- 8. Write notes on:
 - i) Need for ADC and DAC
 - ii) ROM and its types
 - iii) Comparators
 - iv) Encoders.

 $(5 \times 4 = 20 \text{ Marks})$

** * *:

First Semester M.C.A Degree Examination, January/February 2005

Master of Computer Applications

Digital Electronics

Time: 3 hrs.]

Note: Answer any FIVE full questions.

- 1. (a) Perform the following number conversions:
 - i) $(1101.10)_2 = (?)_{10}$ ii) $(95.4)_{10} = (?)_2$ iii) $(ABCD0)_{16} = (?)_2$ iv) $(156.7)_8 = (?)_2$
 - v) $(101011)_2 = (?)_8$

(10 Marks)

[Max.Marks: 100

- (b) Given M = 1000100, N = 1010100, perform M-N operation in 2's complement method.
- (c) Explain with examples (i) error detection and ii) reflected codes. (8 Marks)
- 2. (a) Define Boolean algebra and principle of duality.

(4 Marks)

- (b) Express the Boolean function $F = xy + \overline{x}z$ in
 - i) Standard SOP form and
 - ii) Standard POS form.

(8 Marks)

- (c) i) Compare TFL, CMOS and ECL logic families.
 - ii) Explain what are positive and negative logics.

(8 Marks)

- 3. (a) Simplify the following functions using K-map
 - i) $f(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$
 - ii) $f(w, x, y, z) = \pi(3, 4, 5, 6, 7, 8, 9, 10)$

(6+6=12 Marks)

- (b) Implement the following function using
 - i) NAND gates only
 - ii) NOR gates only

$$f(x,y) = \overline{x}y + x\overline{y}.$$

(8 Marks)

4. (a) Simplify the following function using tabulation method.

$$f(w,x,y,z) = \sum (1,4,6,7,8,10,11,15)$$

(10 Marks)

- (b) Design the following combinational circuits
 - i) Full adder circuit
 - ii) Full subtracter circuit.

(10 Marks)

Contd.... 2

	$\mathcal{C}_{\mathcal{C}}$	
Page .	No 2	MCA ₁ 3
5.	(a) Design a 4-bit carry look ahead adder circuit.	(10 Marks)
	(b) Design a 4-bit BCD to excess - 3 code converter circuit.	(10 Marks)
6.	(a) Design a 4 bit magnitude comparator circuit.	(10 Marks)
	(b) Design a BCD to decimal decoder circuit using AND gates.	(10 Marks)
7.	(a) Explain programmable logic array with an example.	(10 Marks)
	(b) Design a Mod-6 synchronous counter.	(10 Marks)
8.	(a) Explain a 4-bit bidirectional shift register with parallel load.	(10 Marks)
	(b) Explain R/2R digital to analog converter circuit (DAC) and derive a for output voltage. What is the meaning of resolution?	n expression (10 Marks)

1

** * **

Srinivas instill to af Technology - Library, Mangalore

First Semester M.C.A. Degree Examination

Digital Electronics

Time: 3 hrs.]	[Max. Marks:100			
Note: Answer any FIVE full questions.				
Note: Answer any 111 E jun 4				
1 a. Perform the following number conversions $(4021)_{10} = (4021)_{10} = (56)_{10} = (60)_{10} = ($)2			
1) (4021)5 (101.110)				
(AD2D)(6)	(10 Marks)			
iii) $(305.C)_{16} = ($ $)_2$. b. i) Let M = $(101 \ 011 \ 00)_2$ and N = $(1001 \ 00 \ 11)_2$. Using s's complement method			
c M NI				
perform $M - N$. ii) Let $M = 5260$ and $N = 380$. Using 9's complement	t method performs $M - N$.			
White notes on i) RCD code ii) (iray code.	(06 Marks)			
g: vic it a fallowing Roolean functions to minimum	n number of literals.			
2 a. Simplify the following Boolean randoms is $(x + y)(x + y')$ ii) $(A + B)'(A' + B)$	')' (04 Marks)			
i) (x+y) (x+y') ii) (A+B)'(A'+B') b. Express the following function in sum of minterms				
$\mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{v}\mathbf{v}'\mathbf{z} + \mathbf{w}\mathbf{x}\mathbf{v}' + \mathbf{w}\mathbf{x}\mathbf{z}' + \mathbf{w}'\mathbf{x}'\mathbf{z}.$	(06 Marks)			
results of the sing towns with respect to digital it	C families. (10 Marks)			
(i) For out ii) Power dissipation iii) Propagation	delay 177 s torse territor			
God the simplest form in SOP for th	e following Boolean function.			
3 a. Using $K - map$, find the striplest form in SOT for $E = \frac{1}{2} F(A, B, C, D) = \sum_{i=1}^{n} (0, 1, 2, 3, 8, 10, 14)$				
$F(A, D, C, D) = \sum_{i} (0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	(06 Marks)			
A(A,B,C,D) = Y(D,D,D,D,D)				
b. i) Implement the Boolean function $F = AB + CD + EF'$ using only NAND gates.				
b. i) Implement the Boolean function $F = AB + CB + CB$ ii) Implement the Boolean function $F = (A+B)(C+D)$	(08 Marks)			
c. Design an odd parity generator circuit for three inpu	thod			
4 a. Simplify the following function using tabulation me	(10 Marks)			
$F(w, x, y, z) = \sum_{z=0}^{\infty} (0, 2, 3, 6, 7, 8, 9, 10, 13).$	·			
b. Write the truth table of a full adder. Construct full a	dder using two hair adders. (10 Marks)			
5 a. Design a code converter to convert 2 4 2 1 code to 8	(10 Marks)			
b Dogion of a bit full adder with 100K-anead carry.	•			
6 a. Design a comparator to compare two 4-bit binary	numbers and explain its operations. (10 Marks)			
	· · · · · · · · · · · · · · · · · · ·			
b. Explain the working of multiplexers and implemen	(10 Marks)			
$F(A, B, C) = \sum (1, 3, 5, 6)$ using MUX.	`			
7 a. With a neat diagram, explain the working of master	r – slave flipflop. (10 Marks) (10 Marks)			
b Design a BCD rimple counter using JK Inphop.	· ·			
CA his shift register with	parallel load. (10 Marks)			
8 a. Describe the operations of 4-bit shift register withb. With neat sketch, explain the working of a digital r	camp, Analog to digital converter. (10 Marks)			
	(

First Semester M.C.A Degree Examination, July/August 2003

Master of Computer Applications (New Scheme) **Digital Electronics** [Max.Marks: 100 Time: 3 hrs.] Note: Answer any FIVE full questions. 1. (a) Convert the decimal number 250.5 to base 2, base 8, base 16. (6 Marks) (b) Perform the subtraction with the binary numbers using 2's complement (6 Marks) i) 11010-11000 ii) 100-110000 (c) Write a note on: i) Binary coded decimal ii) Reflected code. (8 Marks) 2. (a) Find the complement of the following Boolean functions and reduce them to a minimum number of literals. i) $\overline{AB} + \overline{A} + \overline{AB}$ ii) $\overline{AB} + \overline{ABC} + A(B + \overline{ABC})$ (8 Marks) (b) Express the Boolean function $F = A + B^{\prime}C$ in a sum of minterms. (4 Marks) (c) With a neat sketch, explain TTL NAND gate. (8 Marks) 3. (a) Minimize the following using K-map method $f(A,B,C) = \sum (0,1,2,6)$ ii) $f(A,B,C,D) = \sum (0,13,14,15) + \phi(1,2,3,9,10,11)$ (b) Simplify the function given below using Quine McClusky procedure $f(W, X, Y, Z) = \sum (2, 3, 5, 7, 8, 9, 11, 13, 15)$ (12 Marks) 4. (a) What is full adder? Give the expression for the carry and sum outputs. Draw (12 Marks) the full adder circuit. (b) Design a 4 bit parallel adder and explain its operation. (8 Marks) **5.** (a) Design a circuit that converts BCD to excess - 3 codes. (10 Marks) (10 Marks) (b) Write notes on: i) ROM ii) PLA. 6. (a) Implement the following function with a multiplexer (10 Marks) $F(A,B,C,D) = \sum (0,1,3,4,8,9,15)$ (b) Draw the block diagram of a master slave JK flip-flop and explain its operation. (10 Marks) 7. (a) Design a synchronous BCD decade counter using JK flip-flops. (10 Marks) (b) Explain digital to analog converter with a neat block diagram. (10 Marks) 8. (a) With the help of circuit diagram, explain the working of a counter ramp analog (8 Marks) to digital converter. (b) Write a note on

i) Binary Ripple counter ii) Binary counter.

(12 Marks)

MCA13

First Semester MCA Degree Examination, Dec. 07 / Jan. 08 **Digital Electronics**

Time: 3 hrs. Note: Answer any FIVE full questions. Max. Marks:100

Convert the hexa decimal number BAAB to binary, octal and decimal number systems.

b. Use 2's complement to perform M-N with the given binary numbers:

i) M = 1010100N = 1000100

N = 1010100. ii) M = 1000100

(06 Marks)

c. Explain in detail:

i) Binary coded decimal

ii) Gray code.

(08 Marks)

State and prove Demorgan's theorems.

(06 Marks)

b. Simplify the expression $Z = AB + A\overline{B} \cdot (\overline{A}\overline{C})$.

(04 Marks)

c. Simplify the following Boolean function by using the tabulation method:

 $F = \sum (0, 1, 2, 8, 10, 11, 14, 15).$

(10 Marks)

a. Convert the given expression in standard SOP form: 3

Y = A + AB + ABC

(05 Marks)

b. Convert the given expression in standard POS form:

Y = A(A + B)(A + B + C).

(05 Marks)

c. Design a code converter to convert a excess – 3 code to BCD code.

(10 Marks)

a. Design a 4-bit parallel adder using full adders. Explain its operation. 4

(08 Marks)

b. Simplify the following Boolean function by using a Quine - McCluskey method:

 $F(A,B,C,D) = \sum m(0,2,3,6,7,8,10,12,13).$

(12 Marks)

Write notes on: i) ROM and ii) RAM.

(10 Marks)

b. Design BCD to decimal decoder.

(10 Marks)

a. Draw the circuit diagram of a master slave JK flip-flop. Explain its operation. (10 Marks) 6

b. Explain the following terms with respect to digital IC families:

i) Fan-out ii) Noise immunity iii) Fan-in iv) Propagation delay v) Power consumption.

(10 Marks)

- a. Explain different types of flip-flops along with their truth table. Also explain the race 7 (10 Marks) around condition in flip-flops.
 - b. Design a Mod-6 synchronous counter.

(10 Marks)

- Write short notes any FOUR of the following:
 - a. Universal gates
 - b. 4-bit magnitude comparator
 - c. Error detection codes
 - d. Parity generators

e. Comparators.

(20 Marks)

First Semester M.C.A. Degree Examination, July 2007

Digital Electronics

[Max. Marks:100 Time: 3 hrs.1

Tim	e 3	hrs.]	viaiks. 100
1 111	ic. 3	Note: Answer any FIVE full questions.	
1		 i) Convert (630.4)₈ into decimal number. ii) Convert (320)₁₀ into Hexadecimal number. Use 2's complement to perform M – N with the given binary numbers. M = 1010100, N = 1000100 Write a note on error – detection code and reflected code. 	(08 Marks) (04 Marks) (08 Marks)
2	a. b. c.	State and explain Demorgan's theorem. Explain Huntington's postulates. Simplify $X = \overline{A + B\overline{C}} + \overline{D(E + \overline{F})}$ using Demorgan's theorem.	(08 Marks) (06 Marks) (06 Marks)
3	a. b.	Express the Boolean function $F = A + B'C$ in a sum of min terms form. Simplify the Boolean function using map method. $F(w, x, y, z) = \sum (1,3,7,11,15) + \sum d(0,2,5)$	(10 Marks)
4		Simplify the following Boolean function by using the tabulation method. $F = \sum_{n} (0.1, 2.8, 10.11, 14.15)$ Construct a full adder using only NAND gates. Write the tenth table of adder.	(12 Marks) f a basic full (08 Marks)
5	a. b.	and of the standard of the standard of the subtractor and of	(10 Marks) obtain logical ilf subtractor. (10 Marks)
6	a. b	and the development using AND gates	(10 Marks) (10 Marks)
7	a b	C. W. Gin. flon	(10 Marks) (10 Marks)
8	a	Explain R/2R digital to analog converter circuit (DAC) and derive an eo/p voltage. What is the meaning of resolution?	expression for (10 Marks)

i) Demultiplexer.

(10 Marks) ii) EX - OR and Equivalence functions